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Biodiversity and agricultural sustainagility: from assessment to
adaptive management
Louise Jackson1, Meine van Noordwijk2, Janne Bengtsson3,
William Foster4, Leslie Lipper5, Mirjam Pulleman6, Mohammed Said7,
Jake Snaddon4 and Raymond Vodouhe8
Rapid changes in land use, food systems, and livelihoods require

social–ecological systems that keep multiple options open and

prepare for future unpredictability. Sustainagility refers to the

properties and assets of a system that sustain the ability (agility)

of agents to adapt and meet their needs in new ways. In contrast,

sustainability tends to invoke persistence along current

trajectories, and the resilience to return to current baselines. With

three examples, the use and conservation of agrobiodiversity is

explored along temporal, spatial, and human institutional scales

for its role in sustainagility: first, farmers’ seed systems; second,

complex pollination systems; and third, wildlife conservation in

agricultural areas with high poverty. Incentives are necessary if

agrobiodiversity is to provide benefits to future generations.
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Introduction: the interconnection of three
types of scale
With the advance of the anthropocene [1], human-

induced environmental change is projected to increase

due to population growth, higher per capita resource

demands, and social changes, such as migration. Changes

in land use, food systems, and livelihoods are now occur-

ring so rapidly that there are no set formulas or routes for

successful adaptation [2�,3�]. For example, meeting Mil-

lennium Development Goals (MDG) 1–6 (human well

being) alongside MDG7 (sustainable resource use) is

extremely problematic, especially in regions with an

already limited and declining resource base [4–6]. The

feedback loop between overuse of resources and climate

change will add to the unpredictability faced by rural

populations, despite agronomic interventions [7–9].

For ecosystems to remain functional and healthy, they

must have the capacity to respond to unforeseen change.

This requires keeping a number of options open, even if

such a strategy is inefficient and suboptimal in the here-

and-now. Maintenance of future options requires prep-

aration for uncertainty, and for quick and agile adaptation,

given the rapid pace of change. We use the term ‘sustai-

nagility’ to emphasize the importance of developing

strategies for adaptive capacity and transformability that

consider tradeoffs at multiple scales [10,11��]. This is in

contrast to simply sustaining the present conditions or

systems through increased resilience, that is, the capacity

of a system to experience shocks while retaining essen-

tially the same functions and structures [12].

This paper focuses on how agrobiodiversity can influence

sustainagility at three different scales in agricultural

settings [temporal, spatial, and human institutions

(Figure 1)], thereby affecting how people make man-

agement decisions and plan for future change. It also

considers how current markets and other institutions can

offer incentives for its use and conservation [13,14],

including a short discussion on the role of schemes for

payments for environmental services (PES).

Spatial scales

Agriculture is interpreted here broadly as involving crops,

trees, and/or livestock in some form of domestication.

Agrobiodiversity is not restricted to any taxonomic entity,
www.sciencedirect.com
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Figure 1

Three types of scale (time, space, and human institutions) and their relevance to planning for future uncertainty and the rapid pace of human-induced

environmental change. Along the time axis, efficiency dominates planning in the here-and-now, while planning for persistence is aligned with the broad

concept of sustainability (red bar), and the ability to rebound to current status. Preparing for change requires longer term planning to keep options

open for uncertainty (despite unknown future implications of the current decision point), and thus is aligned with the broad concept of sustainagility

(red bar). Farms are at the origin of the three axes (x, y, z = here-and-now, community institutions, farm), but their successful trajectory toward a

sustainagility paradigm (x, y, z = future planning, regional to global institutions, landscape and beyond) requires communication with and support from

higher institutional and spatial scales.
climatic or ecological zone, or habitat type, for example,

grasslands, savannas, woodlands, and forests are all used

for agriculture. Agrobiodiversity interacts with surround-

ing biodiversity through conversion of habitat, controlled

reproduction of preferred species, tolerance of neutral

species, and actions against undesirable ones [15�].

Farmers manage biodiversity at many scales, and their

decisions are primarily driven by the private benefits they

can reap in the here-and-now. Farmers tend to focus on

provisioning services, which are generally the only class of

ecosystem services that generate an economic return

[16,17��]. Farmers and agricultural practices interact with

different components of biodiversity at several spatial

scales: from local fields and their surroundings; to the
www.sciencedirect.com
layout of agroecosystems at the farm level; and across the

landscape at larger scales; influencing the dispersal and

movement of organisms and their ecological functions.

Greater awareness and integration of various spatial scales

for planning and decisions will be conducive to sustaina-

gility, for example, shifting from a main focus on the farm

to greater focus on the landscape or watershed scales

along the ‘z’ axis in Figure 1.

Temporal scales: efficiency, persistence, and change

Sustainability, defined as ‘meeting current needs without

compromising the future’ [18], is a widely accepted goal

across many sectors of society. But in practice, sustain-

ability criteria and indicators often invoke persistence

along current trajectories, rather than the capacity for
Current Opinion in Environmental Sustainability 2010, 2:80–87
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Table 1

Perspective on ecosystem services [11��] in agricultural landscapes and their association with different types of agricultural time frames

Ecosystem services

Provisioning Regulating Cultural Supporting

Efficiency +++ + + ()

Persistence + ++ ++ ++

Change () + + +++

Supporting services underpin other types of ecosystem services, such as the genetic basis for evolutionary change.
change. Adaptive capacity and recovery from disturbance

are likely to require radically different livelihoods and

environmental management goals compared to simply

continuing with present land use [19��]. Sustainagility,

defined as the properties and assets of a system that

sustain the ability (agility) of agents to adapt and meet

their needs in new ways [10,11��], may be a more appro-

priate term describing the task of preparing for future

unpredictability. Building and maintaining assets that

keep multiple options alive requires emphasis on

social–ecological systems and on interdisciplinary

approaches that deal with the difficult issue of uncer-

tainty.

This temporal framework involves three groups of con-

cerns: first, the flow of goods and services in the here-and-

now realm on which financial returns and efficiency are

focused [17��]; second, persistence and continuity

through investment in assets and stocks, upon which

sustainability is focused; and third, human capacity to

deal with change, to ensure future agroecosystem func-

tioning in ways that include current likely options as well

as those that are still unknown, that is, a sustainagility

focus (Table 1 and Figure 1).

In the here-and-now, concerns for efficiency to achieve

short run profits often dominate farmers’ decision-mak-

ing, hence the farm focus at the origin of the x, y, and z
axes in Figure 1. For example, producers often aim for

profitability of management actions and high returns on

investment from inputs, rather than generating multiple

functions in the landscape even when they themselves

could benefit in the long run from such actions [17��].
Promoting efficiency at an immediate time scale has

repercussions for both sustainability and sustainagility,

since in the long run this could reduce efficiency and

agricultural returns in the future.

Institutional scales

Biodiversity and ecological complexity have been recog-

nized as key components for social–ecological resilience

and adaptive capacity [11��,12,19��,20]. Option values

exist in the context of environmental economics, but

remain hard to quantify and incorporate. The concept

of ecosystem services has helped to bring ecosystem

issues into the realm of policymakers, but it emphasizes
Current Opinion in Environmental Sustainability 2010, 2:80–87
utilitarian, anthropocentric perspectives, and leaves

intrinsic values and option values poorly represented.

Farmer attitudes and social networking are crucial for the

innovation and conservation of biodiversity in agricultural

landscapes. Farmers’ investment in agrobiodiversity

often involves opportunity costs of conservation or fore-

gone benefits from land development [12]. Current mar-

kets and other institutions rarely offer incentives to

promote management systems that support biodiversity

as a public good, for example, for its option value for

improving provisioning and regulating services in the

future [21]. Social capital and collective action are often

required to realize the public goods that can be generated

from the use of agrobiodiversity; thereafter, adaptive

management occurs through relations of trust, exchange,

and connectedness [22].

Multiple drivers affect the behavior and cooperation of

social actors (stakeholders and decision-makers) in

agricultural landscapes [23,24]. Research at the household

and community-level has clearly demonstrated the com-

plexity and value of participatory frameworks for resili-

ence to production shocks, for example, farmers’ seed

systems [25]. But scaling up to the landscape and regional

levels, for example, assessing attitudes of various social

actors in agricultural landscapes (such as interest in bio-

diversity and nature) along with variables describing

biotic communities, ecosystem functions and production

risks, is also needed [26,27]. The evolution of ‘rules’ in

social–ecological systems [12] will determine how social

actors will move from paradigms based on efficiency to

sustainability and sustainagility. As shown in Figure 1,

engagement of higher levels of human institutions (x-

axis) to support long-term planning will be conducive to

sustainagility. To develop contingent forecasts and

scenarios for dealing with a range of outcomes under

uncertain conditions, the effects of multiscale, multi-

institution factors on farmer attitudes and social behavior

must be better understood.

Contrasts between sustainability and
sustainagility
Two of the following three case studies provide examples

of use and conservation of agrobiodiversity within the

context of efficiency, sustainability, and sustainagility.
www.sciencedirect.com
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Table 2a

Number of selected varieties in Burkina Faso (Pobe Megao,

Tougouri and Tiougou), Mali (Segou, Douentza, and Gao), and in

Niger (Dan Saga, Elgueza and Guidan Tagno)

Crop Country

Burkina Faso Mali Niger

Millet 2 (1) 6 (4) 3 (1)

Sorghum 1 (0) 4 (2) 3 (2)

Cowpea 4 (2) 5 (2) 2 (1)

Bambara groundnut NT 2 (2) NT

Peanut 2 (1) 1 (0) 2 (1)

Chinese senna NT NT 2 (2)

Okra 2 (1) NT NT

Brackets indicate local cultivars that served as initial germplasm. NT

indicates that no testing was conducted.
The third example (on wildlife and poverty in Kenya) is

included to show how lack of planning at multiple scales

and institutions puts agrobiodiversity, human well being,

and sustainagility at risk.

Management of crop diversity in West and Central Africa

Farmers’ seed systems are based on farmer-bred varieties,

and occasionally on modern, improved varieties, that are

usually genetically diverse, and have traits of local value,

such as tolerance to environmental stress, or preferred

cooking quality or taste [28,29]. In the Sahel, farmers

experience a high-risk environment because of large year-

to-year precipitation and temperature variability, food

insecurity, and health problems [7,8]. Many food crops

in West and Central Africa rely mainly on farmers’ seed

systems, especially for pearl millet, sorghum, yam, and

traditional leafy vegetables [30]. Yet farmers’ seed sys-

tems are not officially recognized nor supported by gov-

ernments and extension services.

In most emergency situations such as drought, civil strife,

floods, locust invasion, or combinations of these factors,

humanitarian relief practitioners and even national

research or extension institutions generally have assumed

that farmers’ seed systems have collapsed or are

inadequate. Yet field results show that farmers’ seed

systems are usually resilient and remain in operation [31].

Local systems of classification of seed traits reflect socio-

culturally differentiated attitudes of farmers, who seek

diversity and its functional attributes. The wealth of seed

diversity and its associated knowledge is regulated by

specific rights, responsibilities, and division of labor, often

related to gender and age [25,32]. Relationships of trust

and affection within the extended family, neighborhood

or beyond, as well as norms, rules, traditions, customs, and

practices influence the choice of seed by an individual

farmer. In Burkina Faso, Mali and Niger, selling and

buying seed from the markets is uncommon and seeds

are often obtained as gifts [33].

In the Sahelian countries of West Africa, Bioversity

International and its partners have provided training

and infrastructure to strengthen opportunities for farmers

to select and exchange varieties that they conserve [34].

Their Farmer Field Fora (FFF) approach (also known as

Diversity Field Fora approach) is based on the assump-

tion that overcoming rural poverty should be led by the

rural poor themselves, by empowerment to develop more

effective livelihood strategies to lessen shocks, and to

increase the value of their assets. In Burkina Faso, Mali

and Niger, farmers’ groups tested both improved and

local cultivars (Table 2a). Seeds of the selected cultivars

were multiplied and disseminated within and outside the

groups through seed fairs and seed banks. Preferred

selection criteria by women and men farmers differed

(Table 2b).
www.sciencedirect.com
Small farmers in West Africa have very small ‘windows of

opportunity’ for change, and participatory approaches

generate options that farmers are able to use [35]. Rather

than technology transfer from outside sources, the FFF

approach provides a means to achieve sustainagility using

local genetic resources. Informal seed systems generate

an evolving diversified genepool through networks of

exchange and selection. In this drought-prone environ-

ment, the local seed system allows continued adaptation

to meet changing conditions.

Insect diversity in oil palm plantations

Oil palm (Elaeis guineensis) is an enormously successful

global crop, occupying over 13.8 million ha throughout

the humid tropics [36] and providing raw products for

food, consumer goods and, increasingly, biofuel [37,38].

The rapid expansion of oil palm monoculture plantations

has been at the cost of natural forested areas [39] in some

of the world’s most biodiverse regions [40,41]. The con-

version of forest to oil palm leads to significant losses of

biodiversity but impacts vary for different groups of

species and for subhabitats within oil palm plantations

[42].

Biodiversity within agricultural ecosystems can be

enhanced by structural complexity within the landscape

[43�]. For oil palm plantations, this can be achieved

through preservation of forest fragments, riparian strips,

etc., and/or by providing habitat complexity within the

plantation in the form of epiphytes and understory plants

[42]. Complex habitats provide wildlife with shelter,

breeding sites, additional food and other resources,

stability, and the ability to recover from disturbance

[44]. For the crop, conservation of biodiversity may con-

tribute to economically important ecosystem services

such as pollination.

Oil palm was thought to be wind-pollinated, but planta-

tions outside of West Africa originally suffered from low

fruitset and had to be hand-pollinated [45]. In Cameroun,
Current Opinion in Environmental Sustainability 2010, 2:80–87
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Table 2b

Some preferred selection criteria according to gender (for millet and cowpea from the African regions in Table 2a)

Crop/trait Preference

Men Women

Millet

Height Tall Medium

Panicle size Long Long

Grain size Big –

Growth cycle Medium Short

Cooking qualities Market demand Suitable for local dishes and drinks

Cowpea

Growth cycle Short Short

Grain color Market demand White

Insect resistance Field Field and in storage

Cooking qualities Market demand Short cooking time, good taste
where the palm is native, a suite of insects was shown to

be capable of pollinating the crop [46]. The weevil,

Elaeidobius kamerunicus (Faust), was the most effective

pollinator. It was introduced into Malaysia in the early

1980s, and then to other oil palm producing countries,

improving fruitset from 51% to 71% and revolutionizing

the oil palm industry [47]. This dependency upon a single

species to perform such an economically important ser-

vice is, in fact, fragile and precarious. The present popu-

lations of E. kamerunicus have a narrow genetic base as

they were derived from only a few pairs. Parasitic nema-

todes, for example Elaeolenchus parthenonema [48,49], and

climatic extremes also cause fluctuations in populations

[50,51].

For the persistence of effective pollination, new geno-

types of E. kamerunicus could be introduced to strengthen

the genetic base of the populations [49]. A complex

assemblage of pollinating insects may be necessary

[49,52]. Potential native pollinators exist in most areas

[46,53,54]. The apparently sustainable ecosystem service

of pollination that currently exists in oil palm plantations

is probably not robust in the face of future, unpredictable

change. Sustainagility would increase with greater

genetic diversity within the chief pollinator species,

the careful introduction of a range of related pollinator

species, and increasing habitat complexity to encourage a

diversity of native pollinators. Institutional support (e.g.

from the Malaysian Palm Oil Board and Roundtable on

Sustainable Oil Palm) for such interventions is likely

necessary to move beyond efficiency and sustainability,

and toward a sustainagility paradigm for greater resilience

and adaptive capacity.

Wildlife and poverty in Kenya

Kenya has invested heavily in a network of protected

areas for wildlife conservation, which contain the great

majority of Kenya’s wildlife. But a high percentage (70%)

of wildlife either permanently or seasonally lives outside

these formally protected areas [55,56]. The abundance of
Current Opinion in Environmental Sustainability 2010, 2:80–87
wildlife on communal lands optimistically could present

opportunities for local communities to economically

benefit from these populations. Many of the communities

living around these parks live in poverty (i.e. <1 USD/

day) [57].

In the Serengeti–Mara ecosystem, large declines have

occurred in 12 out of the 15 large nonmigratory herbivore

species in the Mara, where more than half of the human

population lives in poverty. For example, resident wild-

ebeest and zebra declined by more than 90% in the last

three decades (Figure 2a). In the Serengeti, which is a

fully protected site, the population of many species has

remained stable (Figure 2b).

Most of the wildlife declines have occurred in areas that

were transformed to agriculture [58,59]. The returns from

agriculture are far greater than those from either livestock

or wildlife conservation for tourism, even in the areas of

highest use by wildlife [55]. Recently, the decline of

wildlife in some protected areas is as high as in communal

areas [56,60], as a result of landscape interactions, further

diminishing the potential for income generation from

wildlife. Nevertheless, many of the communities in Ken-

ya’s rangelands have changed ownership from group

ranches, or from communal to individual private land

tenure, to consolidate their land to form wildlife conser-

vancies, without a sound basis for future income. Land

use in the Mara ecosystem is currently on a trajectory that

is not sustainable for livelihoods and poverty alleviation,

or for wildlife conservation.

Policy and institutional frameworks to expand conservan-

cies are lacking in the area [61]. In some parts of Maasai-

land, however, a number of PES schemes are being tried,

increasing wildlife numbers in some cases, and also con-

serving their habitats [55,56,62,63]. By recognizing that

the custodians of wildlife are local communities under

various land tenure systems, wildlife forums, and con-

servancies and associations, policies may be able to avert
www.sciencedirect.com
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Figure 2

(a) Trend of wildebeest (dotted symbol with continuous line) and Burchell’s zebra (open square symbol and dotted line) in the Mara Ecosystem

(Source: Kenya Department of Resource Surveys and Remote Sensing). (b) Trend of wildebeest (black dotted symbol) and Burchell’s zebra (open

square symbol) in the Serengeti Ecosystem (Source: Tanzania Wildlife Research Institute (TAWIRI) and Frankfurt Zoological Society (FZS)).
critical thresholds for wildlife declines. But these policies

must be oriented toward ‘pro-poor’ benefits, and dealing

with the complexity of efficiency versus equity issues, in

order to be responsive to future social–ecological uncer-

tainties [64], and to increase sustainagility.

Conclusions
Agrobiodiversity plays an important role in sustainagility,

as it provides the biological sources (genes, species, and

habitats) needed for adaptation and transformation to new

production systems under unknown future environmen-

tal conditions. Fostering sustainagility requires under-

standing of ecological processes at spatial and temporal

scales, as well as multiple knowledge systems for

decision-making and enabling positive change for people.

This will often build on ecological and institutional

memory in a given biome [19��]. One form of incentives

for farmers’ use of agrobiodiversity is PES, for example,

direct cash payments, price premiums on agricultural

products, insurance, or land tenure. For most PES pro-

grams that involve crop and livestock producers, however,

the income generated from the environmental benefit

will only be a small share of household income, compared

to profits from farm production [17��]. Other challenges

are clarification of property rights and accurately linking

actions to compensation [14]. PES may become most

effective by leveraging other investment sources to

promote multiple types of ecosystem services. Given that

farmers are the largest group of ecosystem managers on

the earth, emphasis on building multiscale institutions

that increase social participation to use and conserve

agrobiodiversity will lead to greater sustainability and

sustainagility.
www.sciencedirect.com
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